Dehydration reduces cardiac output and increases systematic and cutaneous vascular resistance during exercise.

Published

November 1995

Newsletter Sign Up

Abstract

This investigation determined the manner in which the cardiovascular system copes with the dehydration-induced reductions in cardiac output (Q) during prolonged exercise in the heat. On two separate occasions, seven endurance-trained subjects (maximal O2 consumption 4.70 +/- 0.41 l/min) cycled in the heat (35 degrees C) for 2 h, beginning at 62 +/- 2% maximal O2 consumption. During exercise, they randomly received either 0.2 liter of fluid and became dehydrated by 4.9 +/- 0.2% of their body weight [i.e., dehydration trial (DE)] or 3.6 +/- 0.4 liter of fluid and replaced 95% of fluid losses [i.e., euhydration trial (EU)]. During the 10- to 120-min period of EU, Q, mean arterial pressure (MAP), systemic vascular resistance (SVR), cutaneous vascular resistance (CVR), and plasma catecholamines did not change while esophageal temperature stabilized at 38.0 +/- 0.1 degrees C. Conversely, after 120 min of DE, Q and MAP were reduced 18 +/- 3 and 5 +/- 2%, respectively, compared with EU (P < 0.05). This was associated with a significantly higher SVR (17 +/- 6%) and plasma norepinephrine concentration (50 +/- 19%, P < 0.05). In addition, CVR was also significantly higher (126 +/- 16 vs. 102 +/- 6% of 20-min value; P < 0.05) during DE despite a 1.2 +/- 0.1 degrees C greater esophageal temperature (P < 0.05). In conclusion, significant reductions in Q are accompanied by significant increases in SVR and plasma norepinephrine and a slight although significant decline in MAP. The cutaneous circulation participates in this systemic vasoconstriction as indicated by increases in CVR despite significant hyperthermia.

J Appl Physiol. 79(5):1487-1496.

GSSI Newsletter Sign up

Get the latest & greatest

All fields are required